791. Calculated Bond Lengths in Some Cyclic Compounds. Part V.* 1:2-7:8-13:14-Tribenzocyclooctadeca-1:7:13-triene-3:5:9:11:15:17-hexayne and Diphenyldiacetylene.

By T. H. Goodwin.
Energy levels, bond orders, and bond lengths in these compounds have been derived by the molecular-orbital technique, corrections being applied, by successive approximations, to the exchange integrals $H_{r s}$ for their dependence on bond length.

The results for diphenyldiacetylene suggest that a further study of bond orders and lengths in conjugated acetylenes is called for.

The preparation of a yellow highly crystalline substance tentatively described as the novel macrocycle 1:2-7:8-13:14-tribenzocyclooctadeca-1:7:13-triene-3:5:9:11:15:17hexayne (I) has been recorded recently by Eglinton and Galbraith ${ }^{1}$ although, owing to its instability, final establishment or denial of the postulated structure is proving difficult. ${ }^{2}$ X-Ray examination is being carried out in this department by Dr. J. C. Speakman and Mr. W. K. Grant, and a calculation of the expected bond lengths in (I), subsequently referred to as " the triangle," is of great interest in anticipation of their results. Especially interesting are the lengths of the formal single bonds in the butadiyne arms of the triangle

(I)

because a number of similarly situated single bonds have been found to be remarkably short. For example, the central link in diacetylenedicarboxylic acid dihydrate measures ${ }^{3}$ $1.33 \pm 0.02 \AA$, and so is even shorter than the double bond in ethylene found by Pauling and Brockway ${ }^{4}$ to be 1.34 ± 0.02 and by Galloway and Barker ${ }^{5}$ to be $1.353 \pm 0.01 \AA$. In the same way the middle bond in diacetylene itself is reported ${ }^{6}$ as $1.36 \pm 0.03 \AA$.

Bond lengths have now been calculated for "the triangle" by the molecular-orbital technique, group theoretical methods being used to simplify the calculations. These fall into three parts because the p_{z}-electrons on the carbon atoms of the butadiyne chains interact with each other and with the p_{z}-electrons on the carbon atoms of the benzene rings and so form a π-molecular orbital system spreading over all thirty carbon atoms of "the triangle." The p_{y}-electrons of the atoms in the butadiyne chains are, on the other hand, confined to these chains since the remaining valency-shell orbitals of the benzenoid carbon atoms are engaged in $s p^{2}$-hybridisation and the formation of σ-bonds and so cannot react appreciably with them. Thus the $p_{y^{-}}$and $p_{z^{2}}$-atomic orbitals, giving rise to $\pi_{y^{-}}$and π_{2}-molecular orbitals, must be handled separately and then combined to derive the interatomic distances.
π_{2}-Molecular Orbitals.-The molecule has $D_{3 h}$ symmetry and consideration of the

* Part IV, J., 1956, 3595.
${ }^{1}$ Eglinton and Galbraith, Proc. Chem. Soc., 1957, 350.
${ }^{2}$ Dr. A. Eglinton, personal communication.
${ }^{3}$ Dunitz and Robertson, J., 1947, 1145.
${ }_{4}$ Pauling and Brockway, J. Amer. Chem. Soc., 1937, 59, 1223.
${ }^{5}$ Galloway and Barker, J. Chem. Phys., 1942, 10, 88.
${ }^{6}$ Pauling, Springall, and Palmer, J. Amer. Chem. Soc., 1939, 61, 927.
character table ${ }^{7}$ shows that the π_{z}-molecular orbital energy levels must be $10 E^{\prime \prime}+5 A_{1}{ }^{\prime \prime}+$ $5 A_{2}{ }^{\prime \prime}$, the $E^{\prime \prime}$ levels being doubly degenerate. Thus the thirtieth-order secular determinant breaks down into two (identical) tenth- and two (different) fifth-order ones.

To avoid begging the question we must begin by assuming that all exchange integrals $H_{r s}$ between orbitals on neighbouring atoms r, s are equal. This is done in spite of the fact that one expects $H_{\mathrm{H}-\mathrm{C}}$ and $H_{\mathrm{H} \equiv \mathrm{C}}$ to be respectively smaller and larger than $H_{\mathrm{ar}-\mathrm{ar}}=$ β, the integral between neighbouring orbitals on carbon atoms (taken as $1.39 \AA$ apart) in benzene, since the interatomic distances are in the order pure single bond $>$ benzene bond $>$ pure triple bond. All other exchange integrals and all overlap integrals are assumed to be zero.

With these approximations the energy levels $E-\alpha$ (α being the Coulomb integral for carbon) for this first iteration were obtained (Table 1) by well-established methods, and hence the total π_{z}-bond orders p_{z} were calculated.* These are given in Table 2 for the seven distinctly different bonds of the molecule which, for greater convenience of reference, are indicated as in (II), the repeat pattern of the molecule.

Table 1. Energy levels of π-orbitals in " the triangle." (Only occupied levels are given and these are numbered within each symmetry class in order of increasing energy in the third iteration.)
 class number Iteration Iteration Iteration class number Iteration Iteration Iteration
(i) π_{z}-Orbitals

$A_{2}{ }^{\prime \prime}$	1	$2 \cdot 3028 \beta$	$2 \cdot 4089 \beta$	$2 \cdot 3529 \beta$
$E^{\prime \prime}$	1	$2 \cdot 2504 \beta$	$2 \cdot 3184 \beta$	2.2593β
$E^{\prime \prime}$	2	1.7321β	2.0063β	2.0152β
$A_{2^{\prime \prime}}{ }^{\prime \prime}$	2	1.6180β	1.8288β	1.8425β
$A_{1}{ }^{\prime \prime}$	1	1.3028β	1.4235β	1.4587β

$E^{\prime \prime}$	3	1.3591β	1.4142β	1.4444β
$E^{\prime \prime}$	4	β	0.9990β	1.0036β
$A_{2}^{\prime \prime}$	3	β	0.9234β	0.9489β
$A_{1}{ }^{\prime \prime}$	2	0.6180β	0.8476β	0.9057β
$E^{\prime \prime}$	5	0.3287β	0.5890β	0.7214β

(ii) π_{ν}-Orbitals
$\begin{array}{lllllll}A_{u} & 1 & 1.6180 \beta & 2.1747 \beta & 2.0964 \beta\end{array}$
(ii) π_{ν}-Obitals
$\begin{array}{llllll}B_{g} & 1 & 0.6180 \beta & 1 \cdot 1047 \beta & 1-2364 \beta\end{array}$
Table 2. Exchange integrals $\left(\beta_{r s}\right)$, partial $\left(p_{z}\right.$ and $\left.p_{y}\right)$ and total (p) mobile bond orders, and lengths (L) in " the triangle."

Bond	Iteration	$\beta_{r ı}$	p_{z}	p_{y}	p	L	Bond	Iteration	$\beta_{r t}$	p_{z}	p_{y}	p	L
$a b$	1	1	$0 \cdot 7463$	$0 \cdot 8943$	$1 \cdot 6406$	$1 \cdot 230$	$c d$	1	1	0.5905		$0 \cdot 5905$	$1 \cdot 410$
	2	1.55	$0 \cdot 8895$	0.9453	1.8348	1.214		2	0.93	0.6279		$0 \cdot 6279$	1.397
	3	$1 \cdot 61$	0.9296	$0 \cdot 9661$	1.8957	$1 \cdot 209$		3	$0 \cdot 97$	$0 \cdot 6370$		$0 \cdot 6370$	$1 \cdot 394$
$a c$	1	1	$0 \cdot 4887$		$0 \cdot 4887$	1.449	$d e$	1	1	0.6898		$0 \cdot 6898$	$1 \cdot 380$
	2	$0 \cdot 80$	$0 \cdot 3160$		$0 \cdot 3160$	1.485		2	1.03	$0 \cdot 6905$		$0 \cdot 6905$	$1 \cdot 380$
	3	0.71	$0 \cdot 2590$		$0 \cdot 2590$	1.489		3	1.03	0.6855		$0 \cdot 6855$	$1 \cdot 381$
$b b^{\prime}$	1	1	0.5436	$0 \cdot 4473$	$0 \cdot 9909$	$1-369$	$e e^{\prime}$	1	1	$0 \cdot 6286$		$0 \cdot 6286$	$1 \cdot 396$
	2	1.07	$0 \cdot 3390$	0.3263	$0 \cdot 6652$	1.432		2	0.97	$0 \cdot 6312$		$0 \cdot 6312$	$1 \cdot 395$
	3	$0 \cdot 86$	$0 \cdot 2763$	$0 \cdot 2580$	$0 \cdot 5343$	1.441		3	0.98	$0 \cdot 6407$		$0 \cdot 6407$	$1 \cdot 393$
$c c^{\prime}$	1	1	$0 \cdot 5197$		$0 \cdot 5197$	1.436							

π_{y}-Molecular Orbitals.-The three sets of p_{y}-atomic orbitals of the butadiyne chains must, with the many other atomic orbitals which are symmetrical about the plane of the nuclei, conform collectively to the $D_{3 h}$ symmetry of the whole molecule. However, the non-interaction of these two groups of orbitals makes it very much easier to consider the butadiyne sets separately from the start than to factorise them out later, so this has been done. In this first iteration, there are, therefore, three sets of π_{y}-molecular orbitals which

* It is customary to use p (with or without subscript) as symbol for atomic orbitals of quantum number $l=1$ as well as for bond orders, but care has been taken to make clear which is implied in each case.
${ }^{7}$ Herzberg, " Infra-red and Raman Spectra," van Nostrand Co., New York, 1945, p. 117.
are identical with the π-orbitals of butadiene as calculated with equal exchange integrals between neighbouring atomic orbitals. Their energies are included in Table 1 and the corresponding total π_{y}-bond orders p_{y} in Table 2.

Total Bond Orders and Derived Bond Lengths.-The total mobile bond orders for all electrons are given as $p=p_{y}+p_{z}$. To convert these into bond lengths two correlation curves have been used. The first was established in Fig. 1 of Part I ${ }^{8}$ and is shown as curve D in the Figure of the present paper. This has been used for all $\mathrm{C}-\mathrm{C}$ bonds except $a b$ and $b b^{\prime}$. For these a new curve has been derived as follows. In a system such as " the triangle " the $\pi_{y^{-}}$-and π_{z}-orbitals cannot interact but do intersect in the line of the butadiyne carbon nuclei. Hence what are essentially two butadiene systems are superposed in each of these regions and so the correlation curve should be, not one based on the extrapolation of curve D to a point appropriate to acetylene ($p=2, L=1 \cdot 20 \AA$), but one, T, obtained by doubling the mobile order scale $(0<p<2)$ and extending and displacing the length scale to cover the range $1 \cdot 46>L>1 \cdot 20 \AA$. The graph then passes through the points ($0,1 \cdot 46$), ($0 \cdot 2,1 \cdot 455$), ($0 \cdot 4,1 \cdot 447$), ($0 \cdot 6,1 \cdot 437$), ($0 \cdot 8,1 \cdot 420$), ($1 \cdot 0,1 \cdot 367$), ($1 \cdot 2,1 \cdot 307$), ($1 \cdot 4,1 \cdot 262$), ($1 \cdot 6,1 \cdot 234$), ($1 \cdot 8,1 \cdot 216$), $(2 \cdot 0,1 \cdot 20)$. The value $1 \cdot 46 \AA$ for the pure single bond ($p=0$) formed by $s p$-hybridised orbitals results from the argument that, just as the pure single bond formed by $s p^{3}$-hybrids is shortened ${ }^{9}$ by $0.04 \AA$ when the hybridisation becomes $s p^{2}$, so a similar further shortening is to be expected on passing to $s p$-hybridisation. A comment is made later on the value $1 \cdot 20 \AA$ for $\mathrm{C}=\mathrm{C}$ in a pure triple bond.

It might be objected that this is a rather arbitrary technique for converting bond orders into bond lengths since it implies that, however p is made up from p_{y} and p_{z}, the same bond length is
 obtained. This is so, but the same criticism is applicable to the combination of the partial (one-electron) bond orders which make up p_{y} and p_{z} and could only be overcome by applying a self-consistent field technique. In any case it would be impracticable to derive bond lengths L_{y} and L_{z} from p_{y} and p_{z} and then combine them to obtain substantially shorter lengths L for the complete multiple bond.

From curve T, then, are obtained lengths L for the bonds $a b$ and $b b^{\prime}$, while curve D is used for all other $\mathrm{C}-\mathrm{C}$ bonds. These lengths are given in Table 2 and suggest that the formal single bonds $a c$ and $b b^{\prime}$ are much shorter than might have been expected (1.50 and $1 \cdot 46 \AA$, respectively), the triple bond $a b$ rather longer ($1 \cdot 20 \AA$) than, and the benzene ring bonds not much different from expectation ($1 \cdot 39 \AA$) apart from $c c^{\prime}$ which seems surprisingly large and distorts the hexagon appreciably. However, these deviations are all attributable to the naïve assumption that all $H_{r s}$ between neighbour orbitals are equal to β. To try to correct for this the bond lengths L obtained in the first iteration were used to give improved integrals $H_{r s}$ by means of the table given by Mulliken, Rieke, and Brown. ${ }^{10}$ These are recorded in Table 2 as multiples of β.

Second and Third Iterations.-Energy levels, bond orders and lengths for the second iteration were obtained as before (Tables 1 and 2). The new bond lengths are more realistic. The links comprising the benzene rings are now approximately equal though

[^0]$c c^{\prime}$ is still slightly longer than the rest. The formal triple bonds are of about the expected length though the " diacetylene single bond" $b b^{\prime}$ is much longer than originally, having now a mobile order of only 0.665 from both $\pi_{y^{-}}$and π_{z}-orbitals. Increasing $H_{a b}$ must, of course, decrease the order and increase the length of both $a c$ and $b b^{\prime}$ but it is perhaps surprising that the former has gone up to $1 \cdot 485 \AA$ in length. In fact, the results as a whole should warn against confidence in calculations in which all exchange integrals are equalised in spite of differences in bond type.

Since the second iteration made so great a difference to the estimated bond lengths, a third cycle of operations was carried out to give the further energies, orders, and lengths recorded in Tables 1 and 2, the $H_{r s}$ values being obtained from the lengths given by the second cycle.

The interatomic distances obtained in this iteration differed so little from those obtained in the second that they were supposed now to have converged to the ultimate values appropriate to this type of calculation. Although they are given to a third decimal place, it is not suggested that they are reliable beyond the second; the third is given to facilitate their use in later work.

When this type of calculation is carried out on aromatic condensed-ring hydrocarbons the derived bond lengths agree with good X-ray measurements to within $\pm 0.02 \AA$. There are fewer acetylenic compounds on which X-ray measurements and molecular-orbital calculations have been made, but it seems likely that the present bond lengths in the benzene rings should be within $\pm 0.02 \AA$ of the experimental values when available, and the remaining inter-carbon bonds within about $\pm 0.04 \AA$. However, to permit comparison with a closely similar compound on which experimental measurements have been made, calculations corresponding to the foregoing have now been made on diphenyldiacetylene and are described later. Anticipating these results, we may say that the above conclusions about the reliability of the calculations on " the triangle " seem justified.

Ultraviolet Absorption Spectrum.-The ultraviolet spectrum ${ }^{1}$ of the yellow compound shows rather more than twenty peaks, many of which must represent vibrational structure. Although this spectrum cannot be adduced as conclusive confirmation of the structure (I), yet it is consistent with it, as can be seen by correlating it with the calculated transition energies. Above $250 \mathrm{~m} \mu$ there appear to be three separate electronic transitions with their origins near $23,000\left(\varepsilon_{\max .} 1600\right), 27,800\left(\varepsilon_{\max .} 10,500\right)$, and $33,170\left(\varepsilon_{\max } 234,400\right) \mathrm{cm} .^{-1}$. From simple considerations these should involve the promotion of one electron from one of the highest occupied degenerate pair ($5 e^{\prime \prime}$) of orbitals to one of the lowest unoccupied degenerate pair $\left(6 e^{\prime \prime}\right)$. This promotion gives rise to three excited electronic states $E^{\prime \prime} \times E^{\prime \prime}=A_{1}{ }^{\prime}+A_{2}^{\prime}+E^{\prime}$. Transitions from the ground state A_{1}^{\prime} to the states $A_{1}{ }^{\prime}$ and $A_{2}{ }^{\prime}$ are forbidden in absorption, while the transition to the state E^{\prime} is allowed and should occur with high intensity. On this basis, the intense band at $33,170 \mathrm{~cm} .^{-1}$ would mark the allowed transition $A_{1}^{\prime} \longrightarrow E^{\prime}$ which is polarised in the plane of the molecule. The bands at lower frequency may represent the forbidden transitions $A_{1}{ }^{\prime} \longrightarrow A_{1}{ }^{\prime}$ and $A_{1}{ }^{\prime} \rightarrow A_{2}{ }^{\prime}$ intensified by transfer from the allowed transition. Whether the $27,800 \mathrm{~cm} .^{-1}$ transition belongs to $A_{1}{ }^{\prime} \longrightarrow A_{2}{ }^{\prime}$ and the $23,300 \mathrm{~cm} .^{-1}$ transition to $A_{1}{ }^{\prime} \longrightarrow A_{1}{ }^{\prime}$ or vice versa is a matter for further calculations, but it is noteworthy that the calculated transition energy of $2 \times 0.72 \beta$ corresponds to $c a .28,800 \mathrm{~cm} .^{-1}$ (if $\beta \approx 20,000 \mathrm{~cm} .^{-1}$), which is almost exactly the average energy of the three transitions $\left(28,100 \mathrm{~cm} .^{-1}\right)$; if, however, allowance of $5000 \mathrm{~cm} .^{-1}$ is to be made ${ }^{11}$ for singlet-triplet splitting, β would have to be $16,000 \mathrm{~cm} .^{-1}$. This, though rather low, is still of the correct order of magnitude. Further, the intensity of the putative forbidden transitions can be explained by using a matrix element for intensity transfer of about the same size as that deduced from the spectrum of benzene.

Diphenyldiacetylene.-Partly to check the remarkable change in length of the bond

[^1]$b b^{\prime}$ of " the triangle " between the first and the second iteration, and partly to provide an estimate of the likely deviation between observed and calculated lengths, the interatomic distances in diphenyldiacetylene (III) were calculated for comparison with Wiebenga's measurements. ${ }^{12}$ The π-orbital energies are shown in Table 3 for each of the three iterations, and the exchange integrals, bond orders, and bond lengths are given in Table 4, all being determined by the methods described for " the triangle." Table 4 also includes Wiebenga's measurements (all of which he claims to be accurate to $\pm 0.03 \AA$) and the discrepancy $\Delta=L_{\text {obs. }}-L_{\text {calc. }}$. At all stages the computations on both (I) and (III) ran closely parallel, thereby confirming both the arithmetic and the technique of successive approximations.

Table 3. Energy levels of π-orbitals in diphenyldiacetylene. (Only occupied levels are given, and these are numbered within each symmetry class in order of increasing energy in the third iteration.)
 Symmetry number Iteration Iteration Iteration Symmetry number Iteration Iteration Iteration
(i) π_{ν}-Orbitals

B_{34}	1	$2 \cdot 1829 \beta$	2.3297β	2.2899β
$B_{2 g}$	1	2.1227β	2.0516β	2.0834β
$B_{3 u}$	2	1.6673	1.9018β	1.9029β
$B_{2 \sigma}$	2	1.3417β	1.4104β	1.4412β

$B_{1 g}$	1	β	1.0200β	β
A_{u}	1	β	1.0200β	β
$B_{3 u}$	3	β	0.9511β	0.9913β
$B_{2 g}$	3	0.3859β	0.6905β	0.7995β

$\begin{array}{ccccc}\text { (ii) } & \pi_{2} \text {-Orbitals } & & & \\ 1 & 1.6180 \beta & 2.1578 \beta & 2.0964 \beta\end{array}$
(ii) π_{z}-Orbitals
$\begin{array}{llllllllllll}B_{2 u} & 1 & 1.6180 \beta & 2.1578 \beta & 2.0964 \beta & B_{3 g} & 1 & 0.6180 \beta & 1.1278 \beta & 1.2364 \beta\end{array}$
Table 4. Exchange integrals, partial and total mobile bond orders, and lengths in diphenyldiacetylene.

Bond	Iteration	$\beta_{r s}$	$p z$	$p y$	p	L	$L_{\text {obs }}$.	Δ
$a b$	1	1	0.7814	0.8943	1.6757	1.227		
	2	$1 \cdot 56$	$0 \cdot 9042$	$0 \cdot 9496$	1-8538	1.214		
	3	$1 \cdot 61$	0.9331	$0 \cdot 9661$	1.8992	$1 \cdot 209$	$1 \cdot 18$	-0.03
$a c$	1	1	$0 \cdot 4442$		$0 \cdot 4442$	1.467		
	2	$0 \cdot 76$	$0 \cdot 2871$		$0 \cdot 2871$	1.487		
	3	$0 \cdot 70$	$0 \cdot 2470$		$0 \cdot 2470$	1.490	1-44	-0.05
$b b^{\prime}$	1	1	$0 \cdot 5127$	$0 \cdot 4473$	$0 \cdot 9600$	1.381		
	2	1.03	$0 \cdot 3384$	$0 \cdot 3134$	$0 \cdot 6518$	1.433		
	3	$0 \cdot 86$	$0 \cdot 2740$	$0 \cdot 2580$	$0 \cdot 5320$	$1 \cdot 441$	1.39	-0.05
$c d$	1	1	$0 \cdot 5962$		$0 \cdot 5962$	$1 \cdot 408$		
	2	0.93	0.6337		0.6337	$1 \cdot 395$		
	3	0.98*	$0 \cdot 6456$		$0 \cdot 6456$	$1 \cdot 391$		
$d e$	1	1	0.6827		0.6827	1.383		
	2	1.02	0.6807		$0 \cdot 6807$	1.382		
	3	1-02*	$0 \cdot 6709$		$0 \cdot 6709$	$1 \cdot 385$		
$f e$	1	1	$0 \cdot 6552$		0.6552	$1 \cdot 390$		
	2	1.00	0.6585		0.6585	$1 \cdot 388$		
	3	1.00	$0 \cdot 6640$		$0 \cdot 6640$	1-387		

Agreement between observed and calculated interatomic distances is, not surprisingly, excellent in the benzene rings.

The discrepancy $\Delta_{a b}$ for the acetylenic links is well within the limit admitted both experimentally and theoretically. Its negative sign is probably due either to the selection of acetylene as the standard triple bond or to the use of X-ray crystallography for the measurement of diphenyldiacetylene, for there is a marked tendency (Table 5) for spectroscopic methods to give interatomic distances of about $1 \cdot 20 \AA$ in $\mathrm{C}=\mathrm{C}$ while X-ray investigations lead to slightly shorter lengths though dimethyltriacetylene is exceptional in this respect. It is usual to suggest that the inter-carbon distance in acetylene may be slightly

12 Wiebenga, Z. Krist., 1940, 102, 193.
too great for a pure triple bond by reason of the small negative charges which incipient ionisation of the hydrogen atoms would confer on the carbons. A similar repulsion between negatively charged carbon atoms might apply to symmetrical dihalogenoacetylenes as a result of the high electronegativity of the halogen atoms. Again, in the symmetrical compounds studied by X-rays, the central bonds whether triple or single will be slightly elongated as a result of the net changes which any hetero-atoms in the system will induce, though these elongations may well be too small to take into account in any theoretical estimate of bond length. However, multiple bonds in conjugated systems must be longer than in isolation other things being equal, and so the X-ray results suggest that curve T should perhaps have been drawn to a point $p=2, L=1 \cdot 17 \AA$ (say); it is unfortunate that the central bond of di-tert.-butylacetylene has never been measured. Further, while spectroscopic measurements lead to internuclear distances, X-ray studies give distances between centres of electron density; these are not necessarily the same, and correlation curves between order and length should relate to one experimental method only. Work is therefore planned to investigate this matter further. Meanwhile, for want of a better, curve T must be used.

Table 5. Lengths of some $\mathrm{C}=\mathrm{C}$ bonds.

[M.W. $=$ Microwave; $\mathrm{Sp}=$ spectroscopic measurements; E.D. $=$ electron diffraction; E.D.S. $=$ electron diffraction sector technique; X.R. $=X$-ray measurements on crystals.]

Compound	Length (\AA)	Method	Ref.
Chloroacetylene	1.211 ± 0.001	M.W.	14
Acetylene	1.207 ± 0.002	Sp.	13
Methylacetylene	1.2073	M.W.	15
	1.207 ± 0.002	M.W.	16
Cyanoacetylene	1.203	M.W.	17
Methylcyanoacetylene	1.203	M.W.	18
Dibromoacetylene.	1.20 ± 0.03	E.D.	19
Dimethyldiacetylene	1.20 ± 0.02	E.D.	5
Dimethyltriacetylene	1.199 ± 0.01	X.R.	20
Dichloroacetylene	1.195	E.D.S.	21
Diacetylene	1.19 ± 0.03	E.D.	5
Acetylenedicarboxylic acid dihydrate	1.19 ± 0.02	X.R.	22
Tolan	1.19 ± 0.02	X.R.	23
Diacetylenedicarboxylic acid dihydrate	1.185 ± 0.02	X.R.	2
Diphenyldiacetylene	1.18 ± 0.03	X.R.	12
Di-iodoacetylene	1-18	E.D.	19

The formal single bonds $a c$ and $b b^{\prime}$ as determined in the first iteration are respectively $0.03 \AA$ longer and $0.01 \AA$ shorter than observed. These deviations are within the experimental error indicated by Wiebenga, but it is impossible to believe that all exchange integrals between neighbouring atomic orbitals are the same, and so this agreement between observed and calculated interatomic distances must be ignored. In the third iteration, $\Delta=-0.05 \AA$ for each of these links and this seems rather large. The calculations may be at fault in the correlation of bond length with either (a) exchange integral, though from the method of derivation ${ }^{10}$ this does not seem likely to be serious, or (b) bond order. There have been very few correlations of bond order and bond length in acetylenes

[^2][1958] Adsorption on Oxide Gels from Binary Liquid Mixtures. 3899
which have taken account of the variation of $H_{r s}$ with interatomic distance and further investigations of this are proposed. There is, of course, the third possibility that the X-ray measurements, carried out nearly twenty years ago, are rather less accurate than was supposed.

Dr. G. Eglinton is thanked for helpful discussion, and Dr. J. C. D. Brand for helpful discussions and for his correlation of the ultraviolet absorption spectrum of the yellow substance with the molecular-orbital energy levels of " the triangle."

[^0]: ${ }^{8}$ Goodwin and Vand, $J ., 1955,1683$.
 ${ }^{9}$ Coulson, Victor Henri Memorial Volume, Contribution a l'Étude de la Structure Moléculaire Desoer, Liège, 1948, p. 15.
 ${ }_{10}$ Mulliken, Rieke, and Brown, J. Amer. Chem. Soc., 1941, 63, 48.

[^1]: ${ }_{11}$ Platt, J. Chem. Phys., 1951, 19, 1418.

[^2]: ${ }^{13}$ Herzberg, op. cit., p. 398.
 14 Westenberg, Goldstein, and Wilson, J. Chem. Phys., 1949, 17, 1319.
 ${ }_{15}$ Thomas, Sherrard, and Sheridan, Trans. Favaday Soc., 1955, 51, 623.
 ${ }^{16}$ Trambarulo and Gordy, J. Chem. Phys., 1950, 18, 1613.
 17 Westenberg and Wilson, J. Amer. Chem. Soc., 1950, 72, 199.
 18 Sheridan and Thomas, Nature, 1954, 174, 798.
 ${ }^{19}$ Brockway, Rev. Mod. Phys., 1936, 8, 231.
 20 Jeffrey and Rollett, Proc. Roy. Soc., 1952, A, 213, 86.
 ${ }^{21}$ Finbak and Hassel, Arch. Math. Naturv., 1941, 44, No. 3; Hassel and Taarland, Tidsskr. Kjemi Berguesen Met., 1941, 1, 172.
 ${ }_{22}$ Dunitz and Robertson, J., 1947, 148.
 ${ }^{23}$ Robertson and Woodward, Proc. Roy. Soc., 1938, A, 164, 436.

